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Abstract.
Deformable swelling particles interacting with Newtonian fluid was computed using

the combination of direct-forcing immersed boundary method and mass-spring model. The
swelling of the object was simulated by changing the natural lengths of the spring models. In
addition, the solid-solid interaction is treated by utilizing the distinct element method. Two
cases of interaction between multiple swelling objects and Newtonian fluid are proposed.
As a result, it was shown that the basic behaviors of the swelling-deformable objects are
reasonably calculated with the present method.
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1. Introduction

The interactions between Newtonian fluids and swelling bodies with deformable properties
are introduced in this study. The combination of direct-forcing immersed boundary method
(DF/IB) [1] and mass-spring model (MSM) [2] is proposed for the computation of the inter-
actions of fluid and deformable solid. In addition, the swelling of the object is proposed by
changing the natural lengths of the spring models. The solid-solid interaction is treated by
setting CDS (contact detection sphere) along the solid boundary to detect particle collisions
for DEM computation. The Lagrangian (mass) points used in the MSM-DF/IB computations
share the same points for the placement of CDS used in the particle collisions. Furthermore,
as the swelling computation is utilizing the natural spring length used in MSM, the coupling
of the three methods in one computation is fairly easy.
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2. Numerical method

The fluid is assumed to be incompressible, and the momentum equations are given by
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where u j is the velocity component in x j direction in two-dimensional Cartesian coordinates,
t is time, xi is the component of the Cartesian coordinate system, ρ f is density, ν is kinematic
viscosity, and p is pressure. In addition, ui is the velocity component, fi and λi are the
external and fluid-solid interaction forces in xi direction.

For the details of the computation of MSM-DF/IB, the reader are referred to the detailed
explanation by Guinea et al. [3]. The swelling of objects is calculated by increasing the
natural spring length used in the mass-spring model. As the value of the natural spring
length increases, the restoring force acts on the mass points and the distances between them
also increases. The swelling scheme is applied to the computation of the swelling of a
single hydrogel particle and gives a good agreement when compared to the experiment as
introduced in Guinea et al. [4]. In the proposed method, it is assumed that the volume
increase of the object is equal to the absorbed fluid. Additionally, for simplicity, the density
of the object is assumed to be constant in this study.

3. Applications

3.1. Sedimentation of a single particle in fluid

A swelling particle with initial diameter D0 = 0.25 and density ρs = 1.25 is set inside a
2 × 8 area. The particle is dropped from the initial position of (1, 6) and falls freely with the
gravity acceleration of −980. The particle swells from t = 0.30 until the maximum diameter
Dmax = 0.30. The surrounding sides are treated as non-slip boundaries. The fluid density ρ f

and kinematic viscosity ν are 1.0 and 0.1 respectively. The spring constant and coefficient
of restitution of mass-spring model ks and es are 4 × 106 and 0.5. The number of fluid cells
used in the computation is 200 × 800, the number of Lagrangian points Nl is 70, and ∆t is
5 × 10−3 The calculated particle velocity in y direction is observed and compared with the
case of sedimentation of non-swelling particle with D = 0.25 and D = 0.30.

The changes of the particle diameter and the time history of the particle velocities can be
seen on Fig. 1. The computation shows reasonable results between the three computations.
On the non-swelling particles, the terminal velocity of the particle with smaller diameter
(blue line) is smaller, causing the particle to reach the bottom side later than the particle with
larger diameter (green line). The red line represents the velocity of the swelling particle.
Prior to t = 0.3, the velocity of the swelling particle is equal to the blue line where the
particle is identical in size. Afterward, the particle starts to swell and the velocity gradually
reaches the green line. In addition, due to the increase of the particle velocity on the swelling
particle, it reaches the bottom side before the particle with D = 0.25 and after the particle
with D = 0.3.
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(a) Changes of particles diameter (b) Time histories of particle velocity

Figure 1: Comparison of diameter and particle velocities between the three cases

3.2. Multiple objects transported in two-sided lid-driven cavity flow

Multiple deformable solid particles with various sizes are arranged inside the 2D computa-
tional area filled with fluid as it can be seen on Figs. 2 (a) and 3 (a). The computational
area is filled with fluid with kinematic viscosity ν = 0.01 and fluid density ρ f = 1.0. The
surrounding walls are treated as non-slip boundaries. The top and bottom walls move in hori-
zontal direction with velocities utop,1 = 1.0, utop,2 = 0.0, ubottom,1 = −1.0, and ubottom,2 = 0.0.
The Reynolds number Re is 100. 16 particles with the initial diameter D0 varied between
0.1 and 0.15 with density ρs = 1.5 are set up on the computational area. The spring stiff-
ness ks of the particles are set between 0.56 and 0.88, with the coefficient of restitution
es = 1.0. For the DEM computation, the values of spring constant kD,n in normal direction
is 1.0 × 107. Tangential contact forces is assumed to be 0 in this computation. The coeffi-
cient of restitution eD of DEM computation is 1.0, and the radius of the contact detection
spheres is 0.167D. The number of fluid cells used is 100 × 100, while the number of mass
(Lagrangian) points Nl is 21. In addition, the time increment ∆t is 1.0× 10−4. Two cases are
computed in this study. In both cases, velocities on top and bottom walls are stopped after
t = 10. Non-swelling particles are introduced in the first case, while swelling particles are
on the second case. The particles on the second case are set to swell linearly with the slope
of 3 × 10−3 until the maximum size Dmax of 1.5D0.

Figures 2 and 3 show the computation results on the non swelling and swelling particles.
The black lines represent the line connecting the mass (Lagrangian) points, and red lines
represent the line connecting the outer side of the contact detection spheres. Additional lines
are drawn connecting the surface and the center of the object to help observe rotation on the
particles. Due to the movement of the top and bottom wall, deformations can be observed
especially closer to the moving top and bottom wall where velocity is higher and when
the solid-solid and solid-wall contacts occur. After the velocities are stopped on t = 10,
we can see the particles move only with their remaining speed and finally stopped. The
trajectories of the center points of the particles for 10 ≤ t ≤ 20 can be seen on Fig. 4. It can
be observed that the non-swelling particles are moving further than the swelling particles
after the velocities are stopped. In addition, after the velocity is stopped, the particles on
the second case are still swelling. As a result, the particles push each other, causing slight
movement as it can be observed on the discontinuous lines on Fig. 4 (b).
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(a) t = 0 (b) t = 5 (c) t = 10 (d) t = 15 (e) t = 20

Figure 2: Computation of non-swelling particles

(a) t = 0 (b) t = 5 (c) t = 10 (d) t = 15 (e) t = 20

Figure 3: Computation of swelling particles
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Figure 4: Trajectories of non-swelling and swelling particles for 10 ≤ t ≤ 20 (red
points mark the position of the particles at t = 20)
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