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SYNOPSIS

The focus of this paper is on the applicability of the computational method used to predict the fluid forces
acting on the complicated-shaped solid objects included in free-surface flows. The computational method, MICS,
enables us to predict the fluid forces on the basis of the pressure and viscous terms of the governing equations for
incompressible multiphase fields. A solid object is represented by multiple tetrahedron elements and their volume
fractions included in a fluid-cell are evaluated with a tetrahedron sub-cell method. The predicted results were
compared with the measured fluid forces against a wave breaking block placed in free-surface flows. As a result,
it has been demonstrated that the computational method allows us to predict the difference of the fluid forces

according to the block attitudes and the relationship between the fluid forces and wave heights.

INTRODUCTION

According to the usual reports, the buildings and trees located along rivers and near coastal regions are
sometimes destroved by flooded flows and tsunamis. In addition, collisions and entrapments of debris cause
other disasters in many cases. In order to assess such phenomena, it is necessary to understand accurately the
fluid forces which act on the complicated-shaped objects exposed to free-surface flows. While many experimental
investigations have been made to evaluate the fluid forces of the free-surface flows in various conditions as shown
in (1) and (2), there have been few computational methods that can be applied to such complicated hydraulics
conditions. Thus, in the present study, a numerical method is developed to predict the fluid forces acting on the
arbitrarily-shaped objects in free-surface flows and its applicability is discussed through the comparisons with
experimental results.

In the numerical methods which evaluate fluid forces, the boundary-fitted coordinates and unstructured
meshes are generally used to represent the geometries of the objects and that the normal and tangential stresses

are integrated on the surfaces. It has been shown that these methods are applicable to the evaluation of the fluid
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“forces against the objects that have relatively simple shapes, such as cylinders and spheres placed in the flows
without free surfaces.

On the other hand, it is necessary to deal with complicated-shaped objects as well as the effects of free-surface
motions in the actual problems. In addition, since the movements and collisions of the objects have to be taken
into account, it is difficult to distinguish the boundaries between the fluids and objécts using grid systems and to
apply the surface integration of the stresses as done in thé usual numerical methods. Therefore, the computational
methods, which treat the free-surface flows including solid objects as the multiphase fields like (3).are effective
for such complicated problems. The MICS (4) is one of the computational methods for multiphase fields and its
applicability has been demonstrated for the movements of the three-dimensional objects falling in water and the
ﬂoating blocks transported by wave-induced flows with collisions (5).

In the present study, the predicted fluid forces with MICS are investigated quantitatively with the experi-
mental results. The fluid forces acting on a four-leg wave-breaking block due to wave-induced flows are measured
with strain gages in an experimental flume. The experimental values are compared with the predicted results and

the applicability of MICS is discussed.

NUMERICAL PROCEDURES

Basic equations for multiphase fields

The multiphase field consisting of gas, liquid and solid phases is treated as a mixture of fluids £, which is
the collection of the immiscible and incompressible fluids §2;, as shown in Fig.1. The fluid components €2, in Fig.1
have different physical properties equivalent to the corresponding phases. This treatment enables us to deal with

the free-surface motions and the fluid forces which act on the complicated-shaped objects easily and accurately.
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Fig. 1 Mixture of immiscible and incompressible fluids

The mass-conservation equations in the Eulerian and Lagrangian forms for the fluid mixture § are given as

follows:
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where pp and uy; are density and velocity component in the x; direction of the fluid-k respectively. From the

above two equations, the incompressible condition is derived as
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The momentum equation for Q is given by
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where f; is the acceleration component of the external force and the second term on the right-hand side of Eq.4

means the surface integration of the surface tension Fy; acting in the x; direction. The stress Thyij is defined as
Thij = —Dk0ij + [kek,ij . (5)

where 85, Pk, Mk, €r.ij are the Kronecker delta, pressure, viscous coefficient and deformation tensor of ﬁuid—k,
respectively. :
Assuming that the volume of Q is sufficiently small, a certain variable gb;c (t, ) in each fluid is approximated

as its spatially-representative value ¢y (t) as follows:
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Based on this relationship, Eq.1 is rewritten as
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where p and u; are volume-average density and mass-average velocity component defined as:
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Similarly, with the relationship uyy = u; + @i s, Bq.2 is written as
dp
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Since iy, ; means the difference of velocities between the fluid mixture and each fluid components, the third term
on the left-hand side of Eq.9 is negligible in case that the resolution of fluid cell is sufficient. Thus, the following

incompressible condition is derived from Eqs.7 and 9:
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With the similar procedures, Eq.4 is rewritten as
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In Eq.11, as proposed by a CSF model (6), the surface force is treated as
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This relationship means that the surface force is transformed to the body force. With the same treatment for the
third term of Eq.9. the fourth term of Eq.11 can be neglected. Putting the third term on the right-hand-side of
Eq.11 Dy, it is written with Eq.5 as
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where p and p are volume-average pressure and viscous coefficient defined as follows:
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Finally, assuming that the non-linear term iy ;ilg,; in Eq.11 and the surface tension are negligible, the conservative
form of the momentum equation is derived as
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The governing equations of the MICS consist of Eqs.7, 10 and 15.

Discretization and computational method

The discretized governing equations of the fluid-mixture are solved after determining the volume-average
physical properties by means of the tetrahedron sub-cell method, which will be described in the next section. The
three-dimensional velocity components u; and the pressure variable p of the discretized cquations are defined on
the collocated grid points in the fluid-cell.

The numerical procedures of the incompressible fluid-mixture in a MAC-type method consist of three stages;
prediction, pressure-computation and correction stages. At the prediction stage, the tentative velocity components
u} are calculated at the center of the fluid-cells with a finite-volume method. In this procedure, Eq.15 is discretized
with the C-ISMAC method proposed by Ushijima et al. (7), which is based on the implicit SMAC method (8)
that allows us to decrease computational time without decreasing numerical accuracy. The equation discretized

with respect to time by using the C-ISMAC method is given by
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where o and § are parameters whose ranges are 0 < «, 8 < 1. With the following relationship,
up =y 4 i (17)

Eq.16 is transformed to the following equation:
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where @t; becomes nearly zero when the flow field is almost steady or the time-scale of the flow field is sufficiently
larger than the time increment Af. Thus, we can apply a simple first-order spatial discretization method to
the left-hand side of Eq.18, while some higher-order schemes to the right-hand side. The convection terms are
evaluated with a fifth-order conservation FVM-QSI scheme (9) and numerical oscillations are removed by a flux-
control method (9). The C-ISMAC method enables us to derive the simultaneous equation system easily from the
implicit form of the left-hand side of Eq.18 as well as to preserve numerical accuracy by applying the higher-order
schemes to the explicit form on the right-hand side Eq.18.

After solving the equation system of @;, which is derived from the discretized equation of Eq.18, we obtain
u} with Eq.17. The u} derived at the center of the fluid-cell is then spatially interpolated on the cell boundary.
Before this interpolation. the pressure-gradient term evaluated at the cell center is removed from ] in order to

[

prevent pressurc oscillation as

Tt
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R 4



The cell-center velocity 4;, which does not include the pressure-gradient term, is spatially interpolated on the
cell boundaries by a suitable function f,. After completing this procedure, the pressure-gradient terms that are
estimated on the cell boundaries are added to the interpolated velocity, f5(%;). Thus, we obtain the cell-boundary

velocity component up; as follows:
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The velocity component u}}j’l at n + 1 time-step is defined by
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Subtracting Eq.20 from Eq.21, we have
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where ¢ = p"*1 — p”. Substitution of Eq.22 into the incompressible condition given by Eq.10 that is estimated

at n + 1 time-step yields the following equation of ¢ :
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At the pressure-computation stage, £q.23 is solved by using the C-HSMAC method proposed by Ushijima
et al. (10). The C-HSMAC method enables us to obtain the pressure and cell-boundary velocity components,
which satisfy the incompressible condition [D| < ep in each computational cell, where ep is a given threshold.
While the final results of the C-HSMAC method are similar to those of the SOLA or HSMAC method (11), it
has been proved that the computational efficiency of the C-HSMAC method is largely improved as shown in (4).
The relationships used in the C-HSMAC method are given by
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where the superscript k denotes the iteration step-number of the C-HSMAC method. The initial values of uf
and p* are uy; given by Eq.20 and p™ respectively.

The discretization of Eq.24 yields simultaneous linear equation system of ¢, which is solved with the
BiCGSTAB method (12). The iterative computation using the above three equations is completed when |D| < ¢p

is satisfied in all fluid-cells:
Tetrahedron sub-cell method

As shown in the derivation of the governing equations, the physical values of the mixture of fluids need to
be determined for each fluid-cell. Since the fuid-cell is based on the Eulerian grid which is fixed in the space, the

volume-average physical value ¢ in the fluid-cell is estimated with the following equation:

= (1= i, + (f - Z m-) Yy + Z ok (27)
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where 1, and 1 are physical values in gas and liquid phases respectivély and 1y is that of ﬁhe object—k. The
volume fraction of liquid and solid phases in a fluid-cell is given by f and the fraction of the solid part is defined
by ax. The fraction oy is approximated with a tetrahedron sub-cell method, as shown in Fig.2. As shown later,
a solid object is represented by multiple tetrahedron elements. When the element is completely included in a
single fluid-cell as shown in Fig.2 (a), oy is easily determined as the volume of the element. In contrast, when the
element is included in multiple fluid-cells as shown in Fig.2 (b), a fluid-cell is divided into multiple sub-cells and
ay, is determined from the number of the sub-cells included in the element. The accuracy of the sub-cell method

can be improved by using the smaller sub-cells.

<

(a) a single fluid-cell (b) multiple fluid-cells

Fig. 2 Sub-cell method (thick grid lines stand for fluid-cell and thin
lines in (b) indicate sub-cells )

T-type solid model and fluid forces acting on objects

A solid object in the flow is numerically represented using a T-type solid model. The object surface model,
created with a CAD software, is divided into multiple tetrahedron elements with a three-dimensional mesh gen-
erator. Compared with the “sphere-connected model”, which represents an object with multiple sphere elements,
T-type model has an advantage in that its approximations of volume, mass and inertia tensors are more accurate.

The fluid forces acting on the objects are calculated with the pressure and viscous terms obtained from the
computational results of Eq.15:
19p 10
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where Fry; is the x; component of Fey, which is the fluld force vector acting on the colored area of the object—k
shown in Fig.3 included in a fluid-cell C. The component Fry,; is evaluated from Eq.28 with the volume of a

fluid-cell AC, density of the body oy and volume fraction oy, calculated with the tetrahedron sub-cell method.

HYDRAULIC EXPERIMENTS AND APPLICABILITY OF THE PREDICTION METHOD

Hydraulic experiments to measure fluid forces acting on arbitrarily-shaped objects

The fluid forces acting on an arbitrarily-shaped object, a four-leg wave-breaking block (tetra-pod), were
measured in a flume with a wave generator. : The schematic view of the experimental flume is shown in Fig.4. The
wave generator, which is a flat plate fixed to an electric slider controlled by a PC, is set up on the left side of the

flume. A box is fixed on the right side of the flume, on which the generated waves become free-surface flows. On



Fig. 3 Fluid force acting on a portion of tetrahedron element in a fuid-cell

the top surface of the box, a target block model is supported by a steel plate. The bottom of the block model is
located about 4 mm above the top of the box, so that no friction forces can arise between them.

As shown in Fig.4, the length of the flume (L1 + L3) is 1.4 m. The length and height of the box L is 0.7 m
and 0.1 m, respectively. The width of the flume and the box B aré the same and 0.19m. The initial static water
depth ho and the height of the box hp were 0.104ni and 0.1 m respectively. In this initial condition, the water
level is located 4 mm above the top of the box, which is identical to the heights of the bottom of the block model.
The block model, whose height is about 56 mm, is made of hard rubber and its specific gravity is 2.14. In these

experiments, the center of the block model is located about 0.1m from the left edge of the box.

wave
generator

=5

!l - block

= A ;

li ’ h() box hb

¥ : ¥

f— L —f— L. —
1

|l.> B| |@ block
A

! box

Fig. 4 Experimental flume with a wave generator
(top = side view, bottom = plane view)

Fig.b (a) shows the block model with its supporting plate. Four strain gages were attached to the top of the
supporting plate to measure the fluid forces acting on the block model. The output data of the strain gages were
taken through the sensor interfaces and stored in a PC. The muuerical filters, which were determined from the
free-oscillation of the block model. were applied to the obtained data in order to remove the effects of ifsvnatural
frequencies.

The water depth h,, is defined as the maximum water depth created by the waves at 0.1 m on the left side

of the front edge of the box. Two attitudes were defined for the block model as shown in Fig.5 (b). While one
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leg of the block model faces on the wave generator in the attitude-A, it is set in the opposite direction in the
attitude-B. Three conditions were set up with different hp,, 125, 135 and 147 mm, for two attitudes of the block

model and fluid forces were measured in all cases.

(a) Block model (photo)

(b) Attitudes of block model

Fig. 5 Block model and its attitude

Computational conditions

In the computations, 140 x 38 x 50 fluid-cells were set up for the water and air regions and time increment
At was set at 1.0 x 1072 sec. The initial computational conditions are the same as those of the experiments, in
which the fluid velocity on the left side of the flume is identical to the speed of the wave-generating plate. The
unsteady computations continue until the first wave passes through the block model, which is equivalent to 1.5
sec. The computational time for one unsteady calculation is about 40 nﬁnutes with a single CPU (Pentiumd,
2.66GHz).

The solid-model used in the computations is shown Fig.6, which represents the block model used in the
experiments. The solid-model cousists of multiple tetrahedron elements which was created by means of a CAD
software and a mesh generator. The number of the tetrahedron elements is 416 and that of their nodes is 152.
The density of the solid model is the same as that of the actual block model. The number of the sub-cells is 5 x
5 x 5 in each fluid-cell.

The kinematic viscosities of water and air are 1.0 x 107% and 1.0 x 1075 m?/s, respectively. Their densities

are 1.0 % 10% and 1.0 kg/m® respectively in the computations.
Comparison between experiments and computations

Tab.1 shows the comparisons between experiments and computations for maximuwm water depth hp,. As
shown in Tab.1, predicted h,, almost agrees with the experimental values. The definition of the conditions, H125,
H135 and H147, are also indicated in Tab.1.

Table | Comparisons of hpy, (unit @ mm)

case H125 | H135 | H147
experiments 125 135 147
computations | 125 133 145
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Fig. 6 Solid model used in computations

Fig.7 shows the time histories of the fluid forces I, acting on the block model in H147. The predicted results

are in agreement with the measured values.
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(a) attitude-A, case H147 (b) attitude-B, case H147

Fig. 7 Time histories of fluid force acting on block

The present measuring system enables us to £)1)tai11 the fluid force component F, only in the flow direction.
As shown in Fig.7. the maximum fluid force of F, in the attitude-B is larger than that of the attitude-A.

Fig.8 and Fig.9 show the computational results of the free-surface profiles around the block model. When
the wave-induced flows collide with the block model, the water depth in front of the block becomes deeper than
the depth behind the block. The same tendencies were observed in the experiments, while their quantitative
values were not measured. It can be thought that the fluid forces against the block model consist of the static
pressure due to the difference of the free-surface levels and the pressure distributions created by the vorticities .
behiud the block. Since the high-level water area in frout of the block model in the attitude-B is larger than the
attitude-A as shown in Fig.8 and Fig.9. As a result, the static pressure is dominant in the attitude-B. This is

probably one of the factors that make the maximum value of Fy, in the attitude-B larger than the attitude-A.
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t=1.0(s) R : t=1.0(s)
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Fig. 8 Predicted free-surface flows around Fig. 9 Predicted free-surface flows around
block model (attitude-A, red lines = block model (attitude-B, red lines =

flow patterns near the box surface) : flow patterns near the box surface)



Fig.10 shows the relationship between maximum fluid forces F,,, acting on the block model and the water
depths wp(= Ay, — hp) on the basis of the top surface of the box. It can be observed that F,, increases with
the increase of wy and that the fluid forces in the attitude-B are larger than in the attitude-A in all cases. It is

shown that these tendencies can be reasonably predicted with the present computational method.
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(a) Attitude-A : (b) Attitude-B

Fig. 10 Relationship between maximum fluid forces Fy,m, and water depth wy,
on box top surface (w, = hm — hs)

CONCLUSIONS

A computational method for multiphase fields, MICS, was developed to predict the fluid forces of free-
surface flows against arbitrarily-shaped objects and its applicability was confirmed through the comparisons with
experimental results. In the MICS, the fluid forces arve evaluated from the pressure and viscous terms of the
governing equations for incompressible multiphase fields. A T-type solid model was introduced in MICS, in
which an object is represented by mulﬁple tetrahedron elements and the acting fluid forces are evaluated with
a tetrahedron sub-cell method. The predicted results were compared with the measured fluid forces against a
wave breaking block fixed in free-surface flows. As a result, it has been demonstrated that the computational
method enables us to predict the difference of the fluid forces according to the block attitudes and the relationship

between the fluid forces and wave heights.
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APPENDIX-NOTATION

The following symbols are used in this paper:

B = width of flume and box;

D = divergence of velocity defined by Eq.23;

€k,ij = deformation tensor of {x;

Fey = fluid force vector against a tetrahedron element of object k included in a fuid-cell;
Fori == {—component of Fey;

Fo; ’ = acceleration of surface tension in z; direction;

Fy = fluid force acting on a block model;

Fum = maximum value of F,;

I = volume fraction of liquid and solid phases in a fluid-cell;
I = gpatial interpolation function;

fi = acceleration of external force in x; direction;

foi = acceleration defined by Eq.12;

ho = initial water depth;

hp = height of box;

P = maximum water depth;

Ly, Ly = lengths of experimental flume in Fig.4;

P = volume-averaged pressure;

Dk = pressure of Qy;

t = time;

Upi = cell-boundary velocity component defined by Eq.20;
U = mass-averaged velocity component in z; direction;
Uk.i = velocity component of {3y in z; direction;

U; = cell-center velocity component defined by Eq.19;
Uk, = Uk,i — Ui

W, = P — Ry

Z; = orthogonal coordinates;

«, 3 = parameters ranging 0 < a, 3 < 1;

ag = volume fraction of object k included in a fluid-cell; )
AC = volume of a fluid-cell;

At = time increment;

iy = Kronecker’s delta;

€D = threshold for the error on fluid continuity:

“ = volume-averaged coefficient of viscosity;

Lk = coefficient of viscosity of §;

P = volume-averaged fluid density;

Dk = density of Qy;

T = density of object k;

Tij = voluhe-average of 7y.ij;

Th,ij = stress defined by Eq.5:

¢ =p"t -

Q = mixture of fluids: and

Q; = fluid component of €.
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