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SYNOPSIS

A computational method has been proposed to predict the interactions between free-surface flows and élastic
bodies included in the flows. A solid model, whose deformations due to fluid forces are solved with a finite element
method, is introduced into the MICS, a computational method for incompressible multiphase fields. A solid object
included in the flow is represented by multiple tetrahedron elements, through which fluid-solid interactions are
taken into account on the basis of a tetrahedron sub-cell method. The developed computational method was

applied to the experiments, in which four elastic plates were deformed due to the sloshing motions of free-surface

flows in an accelerated tank. As a result, it was shown that the deformations of the plates and their interactions

with the free-surface profiles are reasonably predicted with the present method.

INTRODUCTION

One of the most important engineering subjects is understanding the interactions between free~surface flows
and flexible objects, such as the dynamic responses of the floating elastic structures and the variation of the fluid
resistance forces of the flexible plants against free-surface flows. While many numerical investigations have been
conducted for one and two-degree of freedom problems such as the oscillations of a cylinder in uniform flows (1),
there are relatively few the numerical studies for multi-degree of freedom related to three-dimensional free-surface
flows. k

k In the present study, a flexible object is represented by a T-type FEM model, in which the object is
represented by multiple tetrahedron elements and its deformation is calculated with a finite element method
(FEM). This T-type model is introduced into a computational method for a multiphase field, MICS (Multiphase
Incompressible-flow solver with Collocated grid System). In the MICS, the free-surface flow including solid ob-
jects; consisting of gas, liquid and solid phases, is regarded as a multiphase field and it is modeled as a mixture of
the immiscible and incompressible different fluids. The fluid-solid interactions are dealt with through the element
of the T-type model and the fluid-cell in the MICS. Since no averaging procedures like turbulence models are
introduced in the basic equations of MICS, it is applicable to turbulent flows around solid objects.

The prediction method was applied to the experimental results obtained in the sloshing motions in a water

tank equipped with elastic plates. The oscillations of the water levels and the displacements of the elastic plates
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are compared between experiments and predictions. By making comparisons, the validity of the prediction method

is examined.

NUMERICAL PROCEDURES
Basic equations

It is important to deal with fluid-solid interactions accurately to predict the displaceﬁ‘xents of elastic bodies
due to fluid forces in free-surface flows. The present numerical method deals with the free-surface flow including
solid objects as a multiphase field consisting of the immiscible and incompressible different fluids. Thus, the
governing equations are derived on the basis of the one-fluid model as shown by Ushijima et al. (2), which are the
mass conservation equation in Eulerian description, the incompressible condition and the momentum equation in

conservation form given as follows:
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where t denotes time, z; is the component of three-dimensional orthogonal coordinates and f; is the acceleration
component of the external forces. While the velocity component u; is the mass-averaged value in the mixture of
fluids, the density o, pressure p and viscous coefficient 1 are defined as the volume-averaged values (2).

The basic equations are discretized in a éollocated grid system and solved with a finite volume method.
Firstly, the volume fraction of the object included in a fluid-cell is evaluated with the tetrahedron sub-cell
method (3) and the volume-average physical properties are evaluated. Then, on the basis of the computational
method for incompressible fluids (3), tentative velocity components are calculated at cell-center points with the
C-ISMAC method (4). The derived velocity components are spatially interpolated on the cell-boundaries and
pressure computations are performed with the C-HSMAC method (5). The free-surface profiles are calculated

from Eq.1 with a non-diffusion filter.
T-Type FEM Model

In the present study, the solid object included in a free-surface flow is assumed to be an elastic body. It is
important to calculate accurately the deformation as well as the acceleration and the velocity at each point of
the body in order to predict the ‘interactians between fluids and flexible objects. For this purpose, a T-type FEM
model is introduced into the MICS. In the T-type model, as shown in Fig.1, an elastic object is represented by
multiple tetrahedron elements. Each element has 10 nodes, which is called a quadratic iso-parametric element.
Since the elements are independent of the fluid cells, its number can be determined in accordance with the shape
of the object. :

The fluid forces acting on the nodes are used to calculate their displacements. When the displacements
depend on time, two sets of additional forces should be taken into account in addition to the elastic forces due
to deformations; an inertia force and a damping force. While the inertia force is given by the product of mass

and the acceleration vector, the damping force is caused by the internal frictional resistances against the motions,



which is assumed to be linear with the velocity of the body. Thus, the basic equation of the dynamic behavior of

an elastic object is given by
Md+Cd+Kd=f, (4)

where d denotes a displacement vector, M is a lumped mass matrix, C' is a lumped damping matrix, K is an

assembled stiffness matrix and f, is the external force vector.
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Fig. 1 Tetrahedron element and nodes

The assembled stiffness matrix K is constructed from the element stiffness matrices K. The K, is calculated

by the following relationship:
K. = / BTDBAV ()
JV .

where V is a tetrahedron element and B7 is the transposed matrix of B, which is a 6 x 30 matrix defined in the

following equation:
€ = Bd (6)

where € is a strain vector. The matrix D in Eq.5 is a 6 x 6 matrix, whose elements are determined with the

Young’s modulus, modulus of rigidity and Poisson ratio, defined in the following form:
" e=De ' 7

where o is a stress vector. Eq.5 is calculated by numerical integration over the standard tetrahedron element
with 4 integral points (6).
s nt1 .

Applying the Euler explicit method to Eq.4, the velocity vector d """ is calculated from the following

equation: :
sl . s 9 R

d"™ =d" 4 M (fr - cd " - Kd") At ®)

Since the matrices M ~! and C have diagonal forms, the products of the matrix and vector are easily calculated.

The stiffness matrix K, on the other hand, must be constructed from the element stiffness matrices K. In order
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to simplify the numerical procedures, element-by-element method (7) is employed. Thus, the product Kd is

calculated directly without composing K using the following procedures:

v(:, 1) =0.040
do ne = 1, nttr | (4)
do nt1 = 1, 10 | (B)
get the node number ndl for ntl
do nt2 = 1, 10 ! (C)
get the node number nd2 for nt2
do j=1,31! (D
doi=1, 31! (B)
v{i, ndi) = v(i, ndl) &
+ ke(i, j, ntl, nt2, ne) &
* d(j, nd2) t (F)
enddo
enddo
enddo
enddo
enddo

The variables nt1 and nt2 stand for local 10 node numbers included in an element, while nd1 and nd2 are global
node numbers for all nodes in the computational region.

The iteration (A) is preformed for all elements, (B) and (C) for the node of a tetrahedral element, (D)
and (E) for three dimensional components. In the numerical process (F), the product of the element stiffness
matrix K, and the element displacement vector d is added to v. After the above numerical procedures, the
“one-dimensional array v contains the elements of the product Kd.

Applying the Euler implicit method to Eq.8, the displacemenis at nodes d™ are calculated with the

following relationship:

d“'szﬂ-i—d.n‘HAt (9)

Interaction between Fluid and Object

The fluid forces acting on the object are determined from the pressure and viscous terms of Eq.3. It is noted
in the present method that the interactions between fluids and objects are evaluated from the volume integral
rather than the surface integral. In the T-type solid model, the fluid forces are calculated at the nodes. Thus, the
fluid force is firstly estimated in a portion of the tetrahedron element included in a fluid-cell, as shown in Fig.2,
and then it is distributed to the nodes. In Fig.2, the tetrahedron elements and a three-dimensional fluid-cell are

schematically shown as triangles with only four nodes and a rectangle respectively.
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Fig. 2 Estimation of fluid force acting on object

In Fig.2, Fopy indicates the fluid force vector acting on a portion of the element Ty, of the object—k
included in a fluid-cell C. The z; component of F g, which is indicated as Fopmi, is calculated with a portion
of the element volume ATy, included in the fluid-cell C' and the density ppr of the object—k as

Fermi = poe AT crm {-—%gf: 4%5% {%(Mui) + %(Hw)” , ‘ (10)
where ATcwm is estimated with the tetrahedron sub-cell method (8).

The fluid force vector Fegm calculated from Eq.10 is distributed to the nodes. As shown in Fig.2, Foum
is transformed to Fopm; at 10 nodes of the tetrahedron element (j = 1,---,10) by applying weighting function
related to the distances from the nodes to the center of the fluid-cell. For each node, the external force vector f,,
included in Eq.4, is determined from the summation of Fopm; taken over related elements and fluid-cells:

On the other hand, the response of the dynamic behaviors of the object is taken into account in the multiphase
field, as shown in Fig.3. "Although the elements and fluid-cell are schematically shown in Fig.3, their actual
geometry is three dimensional and each element has 10 nodes. The velocity vector vg, of the tetrahedron
element is determined as the average value of those defined at 10 nodes, which are equivalent to the node velocity
vector vim; in Fig.3 (j = 1.---,10). The contribution of the element of T}, to the fluid-cell C is then determined
with vgp,, density and volume fraction ATcgy,. Thus the velocity at the center of the fluid-cell in the multiphase

field is determined as the following mass-averaged value:

1 ) ]
U = - (7773/71[ + Z Z/)bktAT(‘A:m’vkm) (11)
k

ne
¢ m

where m¢ and my are total mass in the fluid-cell and the mass of gas and liquid phases, respectively. The velocity

vector of the mixture of gas and liquid phases is given by uy.
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Fig. 3 Transformation from object motion to velocity in multiphase field

HYDRAULIC EXPERIMENTS AND APPLICABILITY OF PREDICTION METHOD

Sloshing Ezperiments with Elastic Plate

In order to confirm the applicability of the prediction method, hydraulic experiments were carried out with
an accelerated tank, in which four elastic plates are deformed due to the sloshing motion of water. The length L
and width b of the water tank shown in Fig.4 are 190 mm and 60 mm respectively. Four elastic plates are fixed on
the bottom of the tank. The plates are made of a kind of sponge with the specific density of 0.255. The lengths
hs, by and bo are 100 mm , 15 mm and 30 mm respectively and its thickness is 10 mm. The distances dy and
do are 45 mm and 35 mm respectively. It was confirmed that the plates can be treated as perfect elastic bodies
through the relationship between the imposed loads and the displacements.

When the horizontal acceleration is given to the tank, large oscillations of the water surface and fluid flows
oceur, which cause deformation of the plates. In the experiments, the initial water depth was set at hy and the
positive acceleration @, was added in x direction for a period of time At,. Following this motion, the negative
acceleration —a, was given for At, and the tank was stopped. The free-surface motions and deformation of the
plates were recorded by a video camera. The acceleration a, was 1.0 ni/ s and At, was 0.2 sec. Three conditions
were set up for the initial water depths hg in the present experiments; 75 mum (case-H75), 100 mm (case-H100)
and 125 mm (case-H125).
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Fig. 4 Water tank used in experiments (side and plane views)

Conditions of computations

In the computations, a fluid-cell was the 5 X 5 x 5 mm cube and they were set for all regions inside of the

tank, including water, air and elastic plate regions. The kinematic viscosities of water and air were set at 1.0 x
1075 and 1.0 x 1075 m?/s respectively. Their densities were 1.0 x 10% and 1.0 kg/m® respectively. The elastic
plate was 1'epresented by 184 tetrahedron elements with 441 nodes using the T-type FEM model. The Young’s
modulus of the plates was 3.5 x 10° Pa and the damping coefficient per unit volume was set at 2.0 x 10* N
s/m/m3. On the boundary surfaces of the computational volume, non-slip conditions are applied to velocity and

normal gradients of the pressure are set at zero.

Comparison between Experiments and Calculations

Fig.5 shows the predicted free-surface profiles and plate deformations for case-H75. In this case, the top of
the plates are always located above the water surfaces. Similarly, Fig.6 and Fig.7 show the calculated results for
case-H100 and case-H125 respectively. In these figures, the iso-lines for the absolute values of vorticities arising
near the plates are also indicated. The red and blue colors show the high and low vorticities, respectively. It
can be seen that the vorticities become larger near the top of the plates. The free-surface oscillation and the

accompanied deformation of the plates are predicted reasonably well in these results.
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Fig. 7 Predicted results (case-H125)

Fig.S shows the time histories of the water levels 75 and 7, on the both ends of the tank, z = 0 and L, as
well as the displacements d; of the top of one plate located in the inner side of four platés. The predicted water
levels generally agree with the measured maximum waver levels 7,,. The phase of the predicted displacement d;
shift by about 7/4 compared with those of the water levels 7o and 7. This tendency means that the maximum
deformations of the plates are mainly caused when the flow velocities reach the maximum values.

Fig.9 shows the time histories of d; obtained in the predictions and experiments. The displacements of the
inner plates, indicated as “ (in) " in Fig.9, are larger than those of the outer ones, indicated as “(out)” in the
same figure.. Since the flow velocities near the edges of the tank are relatively small, the displacements of the
outer plates decrease compared with the inner ones. Including this tendency, the predicted results generally agree
with the experimeiital ones.

Both in the experiments and caleulations, sloshing motions near the first-mode were observed as shown in
Fig.8 to Fig.9. ‘The natural time period of the first-inode sloshing is about 0.51 second for case-H100, while the
natural time period of the elastic plate itself is about 0.16 sec. Since the time period of the plate oscillation is
close to that of the sloshing, it can be thought that the oscillations of the plates are mainly caused by the fluid

motions rather than its natural frequency.
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-+ CONCLUSIONS

In this study, a computational method was developed to predict the interactions between free-surface flows

and the deformations of elastic objects. A T-type FEM model, in which the deformations of elastic bodies

are calculated with FEM, was introduced into the MICS, a computational method for a multiphase field. The

interactions between fluids and solid objects are adequately taken into account through the tetrahedron sub-cell

method. The developed computational method was applied to the experiments, in which four elastic plates were

deformed due to the sloshing motions of free-surface flows in an accelerated tank. As a result, it was shown that

the deformations of the plates and their interactions with the free-surface profiles can be predicted fairly well with

the present method.
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APPENDIX-NOTATION

The following symbols are used in this paper:

B
C
D
d

Fom
fe
fi

K
K.
M
Me

my

Ui

uy

Vkm

At
ATckm
€

1

4

ok

= matrix of stress-displacement relations;

= lumped damping matrix;

= matrix of stress-strain relations;

= digplacement vector;

= fluid force acting on AT, in z; direction;
= external force vector;

= acceleration component of external force;

= assembled stiffness matrix;

= element stiffness matrix;

= lumped mass matrix;

= total mass in the fluid-cells;

= mass of gas and liquid phases;

= volume-averaged pressure;

= time;

= mass-averaged velocity component in z; direction;
= velocity vector of gas and liquid phases;

= velocity vector of tetrahedron element;

= orthogonal coordinates;

== time increment;

= portion of the element volume included in the fluid-cell C';
= strain vector;

= volume-averaged coefficient of viscosity;

= volume-averaged density;

= density of object—k; and

== stress vector.
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