97

Journal of Hydroscience and Hydraulic Engineering
Vol. 19, No.l May, 2001, 97-105

DEVELOPMENT OF MULTIBLOCK-PARALLEL COMPUTATION METHOD
WITH CURVILINEAR COORDINATES AND ITS BASIC FEATURES

By

S. Ushijima and I. Nezu

Department of Global Environment Engineering, Kyoto University
Kyoto-shi, 606-8501, Japan
ushijima@gee. kyoto-u.ac.jp

N. Tanaka and N. Yoneyama

Central Research Institute of Electric Power Industry
1646 Abiko, Abiko-shi, Japan

SYNOPSIS

This paper concerns a multiblock-parallel computation technique for three-dimensional turbulent
flows, which is advantageous to deal with complicated boundary shapes and to improve computational
efficiency as well. A computational domain is decomposed into multiple sub-blocks and their geometries
are represented by curvilinear coordinates. The multiple sub-blocks are connected on their surfaces
without overlap, so that the grids near the shared surfaces can be easily generated even when the
three-dimensional connected regions have complex geometries. The spatial interpolation for some of
the variables are performed with a cubic spline function, which prevents the first-order numerical error
arising between sub-blocks. As a result of the parallel computations for laminar flows with a moving
wall and pressure gradients, it was confirmed that the computational speed is about twice when using
four workstations with 130,000 computational nodes.

INTRODUCTION

In the present study, a new computational technique is developed for three-dimensional turbulent
flows confined in the complicated-shaped boundaries as found in actual hydraulics structures. This
technique is based on the domain decomposition method in which a computational volume is separated
into multiple sub-blocks and their boundary shapes are represented with boundary-fitted coordinates:.
While the boundary-fitted coordinate system is one of the most effective methods which allow us to deal
with the arbitrarily-shaped boundaries (1), it is sometimes impossible to generate coordinates against
extremely complicated objects, such as the pipe systems with branch and combination, due to the
difficulty of grid-point mapping. For such problems, the domain decomposition method, employed in
our computational method, is much advantageous and it can be applied to the computational domain
including discontinuity regions.

In addition, since the structured grid system is adopted in the present method, it is relatively easy
to increase the accuracy related to the discretization and to introduce higher-order turbulence models
rather than the other computational methods, such as finite element methods and finite volume methods
based on unstructured grid systems, which are also applicable to the complicated geometries.

Among the domain decomposition methods, the multigrid systems with overlap (2) and without
overlap (3) have been proposed in the past. While the methods with overlap have the reasonable
accuracy (4), it is difficult to generate the three-dimensional grid points in the complicated geometries.
For this reason, a non-overlap method is employed in the present study and some of the variables on
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the boundaries shared by two sub-blocks are spatially interpolated with the cubic spline function to
increase the accuracy. The validity of this method is demonstrated in the computation of the laminar
flows confined in the parallel plates.

The computations of the flows in the sub-blocks are simultaneously performed with a cluster of
multiple workstations connected with network. As a result of this parallel computations for laminar
flows with a moving wall and pressure gradients, it is confirmed that the computational speed is about
twice using four workstations with 130,000 computational nodes.

NUMERICAL PROCEDURE

Domain Decomposition and Grid Generation

The three-dimensional computational domain is decomposed into multiple sub-blocks with the sec-
tions arbitrarily set up by a user. In the setting up of the multiple sub-blocks, it may be desirable to
take account of the balance of the grid numbers in sub-blocks in order to improve the computational
efficiency in the parallel computation. Figure 1 shows the schematic view of the block decomposition.
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Fig. 1 Schematic view of the block decomposition

The sequential numbers (rank numbers) are given to the generated sub-blocks, as shown in Fig.1 and
the boundary surfaces shared by two sub-blocks are specified by taking account of the connection of
sub-blocks.

This block decomposition allows us to generate boundary-fitted coordinates for the sub-blocks which
have largely simplified geometries compared with the whole computational domain before decomposition.
This curvilinear coordinate system is generated with the following equation which is transformed from
the Poisson equations for coordinates, as done by Thompson (1):
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Here z; and &, are coordinates in the physical and transformed spaces, respectively. The terms having
asterisks (*) are evaluated with the cubic spline function, rather than central differencing, to increase
the numerical accuracy. The control function, given by P, in Eq.1, is used to adjust the mesh intervals
in the physical space.

The unit computational volume consists of 27 grid points in the transformed space. While the
staggered grid arrangement is employed for the contravariant velocity components and pressure variables,
the intervals of the grid points are adjusted near the boundary regions so that the variables are placed on
the boundary surfaces. This procedure means that no variables are defined outside of the computational
domain and it allows us to reasonably set up Dirichlet and Neumann boundary conditions, especially
in the vicinity of the surface shared by sub-blocks. Figure 2 shows the example of this grid-point
arrangement on a two-dimensional plane near the corner.
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Fig. 2 Grid-point arrangement near the corner on a 2D plane (O= p, O=U3, A=Uy)

Computation of Fluid in a Sub-Block

~ In the generated sub-blocks, the transformed governing equations for turbulent flows are discretized
with a finite difference method. The equations with a two-equation turbulence model are given as
follows:

(1) momentum equation
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(2) transport equation for turbulence energy k

Dk (0uidn | Ouj0%n Oui Om C 8%k 8bm Bn ok

Dt M (ag,, 90, 36, Ba; ) m 05, T \" 1 0, M) \ 86,08, Be; 0z, T e

Cj, Beng Om Ok Oty

* G, B 0y 061 07, ' ®

(3) transport equation for the dissipation rate of k
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Here u; and F) are average velocity componeﬁt and external force in z; direction, respectively, and
p is pressure, p density of fluid, v kinematic viscosity and e eddy viscosity. The model constants, Cy,
C,, Ce, Cc1 and Cey, are given as indicated by Rodi (5). The Lagrangian differential operator, appearing
on the left hand side of the above governing equations, is given by
D I} o
== — 5
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where U, is the contravariant velocity component and ¢ and 7 are time variables in physical and
transformed spaces, respectively, which are identical in the present paper.
The governing equations are discretized in a Lagrangian scheme in the transformed space. The
momentum equation given by Eq.2, for example, is written in the following form (6):

3
2
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where PG; and D; are pressure-gradient and diffusion terms included in the momentum equation. The
signs, prime and double prime, in Eq.6 indicate the variables located at the upstream positions at n — 1
and n — 2 time steps, respectively. The other governing equations are discretized in the similar way to
the momentum equation. :

The convection term, corresponding to the first term on the right hand side of Eq.6, is calculated
with the LCSI method proposed by Ushijima (6). As a result, this term is evaluated with the third-order
‘accuracy by using the surrounding 64 variables in the three-dimensional space, which allows us to have
more accurate results than the third-order upwind differencing method.

The pressure field is calculated with the following equation which is derived from the continuity and
momentum equations:
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‘While the grid positions for pressure-variables are changed near the boundaries, as shown in Fig.2, the
second-order accuracy is preserved by using more number of variables than in the internal area. Thus,
the maximum number of the surrounding pressure variables, pyq, used in the computation of p;;; is 21
in the vicinity of the boundary area, as indicated in the following algebraic equation:

21
copft + Y cmbpa’ = RHS (8)
m=1

where ¢g and ¢, are the coefficients including the derivatives of coordinates.

Since these treatments for the governing equations are common in all sub-blocks, the source program
related to these procedures are gathered in a common directory. On the other hand, the information
inherent to the sub-blocks, such as the geometry, boundary conditions and connection with other sub-
blocks, is put in the local directories of corresponding sub-blocks. In the compiling of the source files,
the necessary files in the common directory and in the local directories are selected and then they are
converted to the executable form.

Message Passing in Parallel Computation

The parallel computations for grid generation and for the governing equations of fluid flows in the
sub-blocks are simultaneously performed in multiple workstations (COMPAQ Alpha21164 500MHz)
connected with a network system. The software libraries related to the message passings and other
procedures in parallel computation are provided by LAM (http://www.mpi.nd.edu/lam/), which is
based on the standard MPI (Message Passing Interface) instructions (7). Since LAM allows us to
perform parallel computation on general workstations connected with networks, no special parallel
computers are required for the present numerical method.

In the multiblock system, it is necessary for the sub-blocks sharing common boundaries to exchange
their calculated variables at the suitable computational steps. To perform this multiblock communica-~
tion efficiently, a master-slave model is adopted as shown in Fig.3. The slave processes are assigned to
sub-blocks one by one and they conduct the grid generations and fluid computations in the appointed
sub-blocks. The calculated results located near the shared boundaries are gathered to the master process.
The master process, which has received computed results from multiple sub-blocks, performs spatial in-
terpolation and other numerical procedures and then sends them back to the sub-blocks. Consequently,
the multiblock communication is largely simplified by employing this master-slave type model.

In the computations, as shown in Fig.3, firstly the generated coordinates are transferred to the
master process. Then the computations of turbulent flows start with the given initial conditions. In
the iterative calculation of the pressure field, the variables are communicated among the slave processes
through the master process at every appointed iterative step-number. This data communication allows
us to obtain the adequately converged the pressure fields in the whole computational domain. When
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Fig. 3 Flowchart of multiblock-parallel computation

all variables are calculated at the new (n-+1) computational step, they are transferred to the master
process and some of them are spatially interpolated. This numerical procedures in the master process
are necessary particularly when the computational grids are not coincident with each other on the shared
boundary. The results of the master process are returned to the slave processes and the computations
at the following time step proceed independently in multiple sub-blocks.

Spatial Interpolation between Blocks

The variables located on the shared boundary are used as boundary conditions in the sub-block fluid
computations. On this common boundary, scalar variables except pressure and the velocity components
parallel to the boundary face are interpolated with the variables included in two sub-blocks. In order
to increase the numerical accuracy in this inter-block evaluation, the cubic spline function is employed
in the present study. As indicated in Fig.4, when block-A and block-B are connected and the variable
on the common boundary is given by ¢g and those included inside of the sub-blocks are given by ¢4;
and ¢p; (i =1,2,...), ¢p is evaluated with the following relationship:
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where M4, and Mp; are second derivatives of ¢ and they are calculated from two third-order polynomial
functions, which are uniquely determined with the four variables ¢4; and ¢p; (i = 1,2,...,4). In Eq.9,
d, da1 and dp; are the distance between ¢ 41 and ¢p1, between ¢ and ¢ a1 or ¢dp1, respectively.

In the actual computation, the second derivatives M4y and Mp; are calculated in the slave processes
and they are transferred to the master process. In the master process, the variables on the common
boundary are interpolated with Eq.(9) and then the results are returned to the slave processes.

NUMERICAL ACCURACY AND COMPUTATIONAL EFFICIENCY

Inter-block Spatial Interpolation
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Fig. 4 interblock evaluation on the common boundary

The present computational scheme and other numerical procedures have been applied to the various
flows, such as the three-dimensional flows in a curved pipe and thermally stratified flows in a curved
duct (6), and its validity has been demonstrated. The computational accuracy, however, is not certain
with the multiblock system especially near the boundaries shared by sub-blocks. Thus, the present
numerical technique is applied to the laminar flow confined in two parallel walls, whose velocity profiles
are theoretically known.

Figure 5 shows the computational domain and boundary conditions about this problem. The domain
is a cubic volume with unit length in each direction. .
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Fig. 5 Computational domain ¢==p-: shared boundaries

Fig. 6 Domain decomposition

The boundary plane at y = 0.5 is a movable wall with the speed U in z direction and the other
surface at y = —0.5 is a fixed wall. Two surfaces vertical to the z axis are free-slip boundaries. While
the cyclic boundary conditions for velocity are applied to the upstream boundary at z = 0 and the
downstream one at z = 1, the constant pressure difference is also put on these two boundaries. The
fluid in the computational domain starts to flow due to the movement of the wall and pressure gradient
dp/dz in x direction. The velocity field is finally in the steady state after sufficient time.
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In this condition, the theoretical velocity profile is given by
1dp 2
= U(0. - ——(0.25 —
u(y) =U(0.5+y) o 75025 =) (10)

When the pressure gradient equals zero, it becomes the Couette flow with the following linear velocity
profile: .

uly) = U(qjs +y) (1)

From Eq.(10), the following non-dimensional pressﬁre gradient P is defined:
P=ee—e—— = (12)

In the multiblock computations, the domain was decomposed into four sub-blocks, as shown in Fig.5
(a), and both linear and spline interpolations were employed as the inter-block evaluations and two
results were compared. All intervals of grid points are constant and a control function Py, in Eq.(1)
was set at zero. The unsteady calculations were performed from the initial static velocity field until the
velocity profiles are almost in steady state with 10,000 computational steps.

Figures 7 (a) and (b) show the comparisons between theoretical and computational results. As shown
in Fig.7, the discrepancies between the theory and the computational results with the inter-block linear
interpolation become large with the increase of P. In particular, as indicated in Fig.7 (b), the maximum
velocity is evaluated smaller than the theory when U = 0 and P = 5. In contrast, the computational
results with inter-block spline interpolation agree well with the theoretical results.
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Fig. 7 Comparison of velocity profiles between linear and spline interpolations

Improvement of Computational Efficiency

The computational efficiency was compared between single-block and multiblock computations with
four workstations. The results are shown in Fig.8, which indicates the computational time against the
mesh number.
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Fig. 8 Comparison of computational efficiency

Although the multiblock computation is not advantageous in terms of the computational time when
mesh number is less than 20,000, as shown in Fig.8, its computational efficiency is obviously improved
when lager number of grid points are used. As a result, the computational speed reaches about twice
compared with the single-block condition when the mesh number is about 130, 000.

CONCLUDING REMARKS

In the present study, a multiblock-parallel computation technique has been developed for three-
dimensional turbulent flows, which allows us to deal with the complicated boundary shapes and to
improve computational efficiency as well. In this computational method, a computational domain is de-
composed into multiple sub-blocks and their geometries are represented by curvilinear coordinates. The
governing equations for turbulent flows are discretized in a Lagrangian scheme. The multiple sub-blocks
are connected on their surfaces without overlap, so that the grids near the shared surfaces can be easily
generated even when the three-dimensional connected regions have complex geometries. The spatial
interpolation for some of the variables are performed with the cubic spline function, which prevents
the first-order numerical error arising between sub-blocks. As a result of the parallel computations for
laminar flows with a moving wall and pressure gradients, it was confirmed that the computational speed
is about twice when we use four workstations with 130,000 computational nodes.
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APPENDIX-NOTATION

The following symbols are used in this paper:

Ci, Cy, Ce, Ce1, Cea = coefficients of turbulence model;
oy Cm = coeflicients of pressure Poisson equation;
D/Dt = Lagrange differential operator;
D; = diffusion term in momentum equation;
d = distance between ¢ 41 and ¢py;
da1 = distance between ¢g and ¢a1;
dp1 = distance between ¢ and ¢p1;
doubleprime(”) = variable at upstream position at n-2 step;
F; = external force in z; direction;
FU; = discretized form of right hand side of momentum equation;
k = turbulence energy;
Ma1, Mp: = second derivatives of ¢ near shared boundary;
P = non-dimensional pressure gradient;
P, = contral function;
PG; = pressure gradient term in momentum equation;
p = mean pressure;
prime(’) = variable at upstream position at n-1 step;
t = time in physical space;
U = wall speed;
U = contravariant velocity component;
U; = mean velocity component in z; direction;
z; = coordinates in physical space;
At = time increment;
€ . = dissipation rate of turbulence energy;
€M = eddy viscosity;
= coefficient of viscosity;
v = kinematic viscosity;
Em = coordinates in transformed space;
p = fluid density;
T = time in transformed space;
fo = variable on shared boundary;
bai,dp: (1=1,2,..) = variable near shared boundary;

(Received August 22, 2000 ; revised December 22, 2000)



