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SYNOPSIS

A numerical prediction method is developed for sand bed deformation due to horizontally discharged
buoyant jets. Three-dimensional buoyant flows and sediment transportation are predicted with a two-
equation turbulence model. In order to represent unsteadily deformed bed profiles, three-dimensional
boundary-fitted coordinates are regenerated at regular intervals and the moving boundaries are treated
on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. The governing equations are
transformed into a mapped space and discretized on a Lagrangian scheme with third-order accuracy for
advection terms. This computational method is applied to a nearshore area where local scour is caused
by cooling-water discharge. The sand bed profiles actually measured in the field are compared with the
predicted results. . '

INTRODUCTION

The accurate estimation for sediment transportation and resulting bed deformation is essential to
design hydraulic structures exposed to these phenomena and to assess their long-term stability.

In nearshore regions, local scour may arise on a sand bed in front of a power station when cooling
water is discharged with high velocity from its submerged outlets. In this problem, it is necessary to
deal with turbulent flows affected by buoyancy force above the unsteadily deformed bottom boundaries.
Therefore, most of the empirical formulations, which were usually derived in fairly simple hydraulic
conditions, are no longer available. In addition, although many numerical techniques have been proposed
so far, it is obvious that we cannot obtain any useful information from two-dimensional or quasi-three-
dimensional models.

A desired approach is to employ a complete three-dimensional numerical method with adequate
treatment for the unsteadily and non-uniformly deformed boundaries. Three-dimensional numerical
methods for local scour were proposed in the past by Ushijima et al. (1), Olsen and Melaaen (2),
Ushijima (3) and others. In these methods, however, only an isothermal flow field can be dealt with
and they were verified using only experimental results obtained in the laboratory. Thus, it is necessary
to extend the applicability of usual techniques to more general conditions and to verify them with the
data actually measured in a field. ‘

In the present study, a numerical prediction method is developed for bed deformation due to three-
dimensional turbulent flows affected by buoyancy force. In this method, the buoyant flows and sediment
transportation are predicted with a two-equation turbulence model. The effects of the unsteadily de-
formed bed profiles on a flow field are adequately taken into account, since the boundary shapes are
precisely represented using three-dimensional boundary-fitted coordinates (4), which are generated re-
peatedly to respond to unsteady deformation. In this coordinate system, the moving boundary is
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treated with the arbitrary Lagrangian-Eulerian (ALE) formulation (5) and the governing equations are
transformed into a mapped space, where discretization is made with sufficient numerical accuracy.

This computational method is applied to a nearshore region where sand bed is scoured by cooling-
water discharge from a power station. The bed profiles actually measured in the field are compared
with the predicted results. From the comparison, it will be shown that the applicability of the present
numerical method to actual fields is satisfactory. The derived computational method is expected to be
applied to wide range of sediment transportation and bed-deformation problems in hydraulics, in terms
of the accuracy and the generality of the present numerical model and solution algorithm.

NUMERICAL PROCEDURE
Grid Generation

The sand bed profiles unsteadily deformed by flows can be treated as moving boundaries. Thus, three
dimensional boundary-fitted coordinates are employed to represent complicated-shaped bed profiles
and the coordinates are regenerated at regular intervals in order to respond precisely to the unsteady
deformation. The movements of computational grid points, arising from this approach for moving
boundaries, are adequately taken into account in the governing equations on the basis of the ALE
formulation.

Let (f,z;) and (7,€m) be the time and three-dimensional spatial coordinates in the physical and
mapped (or computational) spaces, respectively (¢,m = 1,2, 3). The present boundary-ﬁtted coordinates
can be obtained from the following equation (4):
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where p # g and r = s. The Einstein summation rule is applied to the terms bearing the same subscripts
twice in this paper. The control functions P, may be used to arrange the grid intervals in the physical
space. In Eq. 1, the derivatives having asterisks are not evaluated by the usual central difference, but

from the general cubic spline interpolation (GCSI) as proposed by Ushijima (6) to improve the numerical
accuracy in grid generation. :

Governing Equations For Turbulent Buoyant Flows

The equations of motion are Reynolds equations, derived as the ensemble-averaged Navier-Stokes
equations. When using a general k — € model, the Reynolds equations may be given as the following
forms in the physical space:
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Here uy, g;, p, p, B, AT, e and v are average velocity and gravity acceleration in z; direction, pressure,
fluid density, thermal expansion coefficient, temperature difference from a standard value, and eddy and
kinematic viscosities, respectively. The momentum equations are transformed into the computational
space and then discretized as described later.

The energy equation in the physical space is given by

DT 8 or ~ .
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where T, ey and o are average temperature, eddy and molecular conductivities respectively. The eddy
conductivity may be given with the eddy diffusivity and turbulent Prandtl number P

€M ~ ;
= A 4
€H=p : (4)
Since the turbulent Prandtl number is affected by the vertical temperature distribution, it is modeled
as the following form proposed by Ushijima et al. (7):

1 1.6
B 1+024B; (5)

where the buoyancy parameter By, proposed by Launder (8), is defined by

(6)
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with the vertically-upward coordinate 3.

The transport equations for turbulence energy k and its dissipation rate e are written in the physical
space as
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The coefficients of the turbulence model are Cy, = C, = 0.09, C, = 0.075, C = 1.44, Cp = 1.90 as
proposed by Rodi (9).

Since the ALE formulation is employed the Lagrangian differential operator, which is defined in the
transformed space, is given by

D a3 8
—D—t~5;+(Um—Umn)5€—m 9)
This differential operator is applied to the transformed governing equations. The contravariant velocity

components Uy, and Uy, correspond to the fluid velocity and that of the computational grid point
respectively, which are defined as

Fm
Up = ui—=— Bz, (10)
and
_ Oy Obm . .
Uom = or Oz; (1)

The transformed governing equations are discretized on a Lagrangian scheme in the computational
space. For example, Eq. 2 may be expressed as the following simple form in the transformed space:

Du;
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where PG;, F; and D; stand for the pressure gradient, external force including buoyancy effects and
diffusion terms respectively. Taking account of the Taylor expansion for total differentiation up to the
second-order terms, Eq. 12 can be discretized in the following form, which was applied to Navier-Stokes
equations by Ushijima (6): ‘

Wt = T [-pc:;?“ +F + (gD'? - -;-D"?‘l)} At (13

Here the superscripts stand for the computational step number and prime and double prime mean the
values at upstream positions P'(£1,£5,€3) and P(£7,£4,£3) respectively, where &, = &, — (e
"om)AT and &, = &n — &, — (Ut = U'g 1A

The first term on the right hand side of Eq. 13, corresponding to the convection term, is calculated
with the spatial interpolation in which local cubic spline interpolation (LCSI) is utilized in the three-
‘dimensional computational space (6). This evaluation has third-order accuracy and it is effective to
decrease numerical diffusion arising from advection terms. It has been shown that the LCSI method is
more accurate than third-order upwind scheme even with finer mesh divisions (6).

The other basic equations, energy equation and the transport equations for turbulence quantities,
are discretized as Eq. 13. The submodules of our computational method have been applied to the flows
in various conditions and verified in detail with their experimental results (1), (7) and (6). Thus, it is
expected to have reasonable applicability to the turbulent non-isothermal flows dealt with in the present
study. '

Computation of Pressure Field

Differentiating Eq. 13 with respect to z;, the following equation is derived usixig a continuity equation
for incompressible flows:
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where the continuity equation at n + 1 computational step is assumed to be satisfied as Harlow and
Welch (10). After the spatial discretization of pressure on staggered grid arrangement as done by
Ushijima(6), Eq. 14 may be written in the following form:

21
copftt + D cmpltt = RHSij : (15)
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where p{,‘;;‘ is the pressure at the neighboring 21 grid points and ¢,, means the coefficients indepéndent
of the pressure. Eq. 15 reduces to the following matrix equation:

Ap=b o 16)

Here the matrix A consists of ¢,,, and p and b are column vectors formed with p;,‘qtl and RH S
respectively. This matrix equation is solved with a preconditioned biconjugate gradient method.

Governing Equations for Sediment Transportation

The continuity equation for bed material is utilized to predict bed profiles. The continuity equation
for sands in the physical space is written as

OB aqi _ :
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Here v, B and ¢; stand for the porosity of bed material, the height of the bed and sediment fux in
x; directions respectively. This equation is also transformed into the computational space and then
discretized as other governing equations. The sediment flux may be sum of the bedload and suspended
load as treated in our previous work (1), (3). However, most of the empirical bedload equations are
derived for equilibrium one-dimensional flows. Thus, as done by Olsen and Melaaen (2), both bedload
and suspended load are assumed to be evaluated at the same time with the advection-diffusion equation
for sediment concentration. This transport equation is written in the physical space as '

D*C lé] ac
=2 9= 18
A (18)
where C is the average sediment concentration and eg and A are turbulent and molecular diffusivities
for C. The Lagrangian differential operator in Eq. 18, defined in the transformed space, includes falling

velocity wp as
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Consequently, the sand flux ¢; in Eq. 17 is estimated by vertical integration of the concentration flux,
Cuy.

The amount of the lifted sand particles is evaluated by the pick-up rate p,, proposed by Nakagawa
and Tsujimoto (11}, which is approximated by

d - '
Psy /m = 0.037, (1 — 0.035/7,) 004<m < 0.2}' (20)

where o and d are density and diameter of sand particles. The normalized bottom shear stress Ty i
defined here as the summation of two components due to discharged flows 7, ¢ and wave motions Tewm:

Ta = Taf + Tawm (21)
The shear stress by the flow is given by

2
Uhs

(0/p—1)gd

where the friction velocity up. is defined by up, = (u2, + u2,)!/2? with general logarithmic law for a
hydraulically rough wall. The other bottom shear stress caused by wave motions is evaluated by the
equation proposed by Jonsson (12) with the assumption of small amplitude waves.

Taf = (22)

APPLICATIONS TO FIELD OBSERVATIONS

Field Measurements

In many cases, the verification of numerical methods for bed deformation was made using only
experimental results obtained in the laboratory, and field measurements were scarcely reported especially
for the scour in front of a power station when cooling water is discharged from its submerged outlets.
However, reliable observations have been continued in a thermal power station in northern Japan. In
this power station, the topography of the sea bed has been measured every year since 1992 and nearly
steady bed profiles are obtained in two different conditions for cooling-water discharge. One result
measured in 1995, CASE-A, presents the bed profiles caused by one cooling-water jet from a submerged
outlet and the other result in 1996, CASE-B, provides the profiles created by two jets discharged from
two outlets.
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Fig. 1 Schematic view of bed conditions and outlet structures

Fig. 1 shows the schematic view of the bed conditions and outlet structure in the power station. The
flow rate of the discharged cooling water is 27.3m3/s per single outlet and its average velocity is nearly
5.0m/s. As shown in Fig. 1, three submerged outlets are horizontally arranged with equal intervals.
The bed area over z = Om — 40m and y = Om — 26m is covered with concrete blocks to prevent scour
and the bed material over £ = 40m — 71m and y = 26m — 36m is replaced with stones about 0.9m
in diameter, which is called SPAC (Spreading Armor Coat) proposed by Shimizu et al. (13), aiming
to protect the upstream concrete block area. The further downstream bed region consists of nearly
uniform sand whose diameter is about 0.2mm, as confirmed by the soil tests.

Conditions of Computation

In the present study, the computational method is applied to the results in CASE-A and CASE-B,
taking account of the actual plant operation. The conditions for wave motions are determined from
the observed dats; the time period, wave height and length are 5sec, 0.7m and 35m, respectively. The
discharged cooling water has higher temperature by 7°C than that of the environmental water which is
assumed to be set at 20°C. The computational mesh number is & X €5 X &3 = B1 x 35 x 15 = 26,775
and each grid point may be referred with indices 4, j and k, where i = 1 (upstream boundary) to i == 51,
J = 1 (symmetrical center boundary) to j = 35 (free boundary), and k = 1 (bottom boundary) to
k = 15 (free surface).

Since the effects of wave motions on the bottom boundaries are taken into account as shown in Eq. 21,
the free surface is treated as a fixed wall without friction force. The bottom boundary condition for
fluid velocity is regulated by a general logarithmic law near & hydraulically rough wall. The symmetric
boundary conditions are applied to the vertical section on the center line, while free boundary conditions,
in which normal gradients of physical quantities are set at zero, are utilized on the outer boundaries
shown by broken lines in Fig. 1.

The computational procedures for local scouring are based on the techniques proposed by Ushi-
jima (3), in which the numerical predictions for turbulent flows and for bed deformation are performed
alternately with different computational time increments. This method allows us to deal with the largely
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different time scales for these two processes. In the present cases, the time increments in the compu-
tations for fluid dynamics and bed deformation are set at 0.25sec and 3.6 x 10%sec respectively. Since
the deformation of sand bed is less than 5 % during the computational process of local scouring, the
difference of time increments has no effects on the final sand bed profiles (3). The total computational
time for local scour in CASE-A, for exarple, was about 20 hours using DEC 3000-700 AXP.

Comparison of the Results

In the first step of the computation, a steady flow field is obtained assuming the bottom boundary
is a fixed surface. Fig. 2 show the distributions of fluid temperature and velocity vectors obtained in

this calculation. These results are used as initial conditions for the computation of bed deformation in
CASE-A. ,
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Fig. 2 Distribution of temperature and velocity vectors in initial

conditions for
CASE-A (unit of number = °C, line interval = 1 °C)

As a result of the computation for CASE—A, the constant maximum depth, 3.04m below the initial
sand bed level, is obtained in 350 days. Fig. 3 shows the predicted velocity vectors, temperature

distribution and generated coordinates with the steady bed profiles. In this steady state, bottom shear
stress is less than the critical value and the sediment concentration is zero in all area.
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Fig. 3 Distributions of temperature, velocity vectors and generated mesh in final
steady state for CASE-A (unit of number =

= °C, line interval = 1 °C)
The prediction for CASE-B is started with the final bed profiles in CASE-A and additional discharge

from the upstream boundary. The initial steady flow field, shown in Fig. 4, is first calculated by setting
the bed profiles are not changed by the increased discharge.
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Fig. 4 Distribution of temperature and velocity vectors in initial conditions for

CASE-B (unit of number = °C, line interval = 1 °C) ‘

Since the flow rate is doubled in CASE-B, the high temperature fluid is extended downward and

near-surface regions compared with the results in Fig. 2. After about 400 days from additional discharge,

the maximum depth becomes constant, 4.56m below the initial level. Fig. 5 shows the velocity vectors,
temperature distribution and generated mesh obtained on steady bed profiles in CASE-B.
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Fig. 5 Distributions of temperature, velocity vectors and generated mesh in final
steady state for CASE-B (unit of number = °C, line interval = 1 °C)

The contour maps for bed profiles are shown in Fig. 6. While the predicted width of the scoured
area is somewhat narrower than that of the measured results, the fact that the deeply scoured positions
appear on the center line just downstream the SPAC region is predicted in the calculated results. The
difference in the width of the scoured area might be caused by the meandering of the discharged flows
due to nearshore currents in the actual field, which are not taken into account in the numerical model.
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The comparison of the bed profiles on the center line, including the deeply scoured ares, is presented
in Fig. 7. It can be seen that the measured bed profiles both in CASE-A and B are in reasonable
agreement with the predicted results.

CONCLUDING REMARKS

A numerical prediction method has been developed for bed deformation due to three-dimensional
turbulent flows affected by buoyancy force. In this method, the buoyant flows and sediment trans-
portation are predicted with a two-equation turbulence model. The effects of the unsteadily deformed
bed profiles on a flow field are adequately taken into account, since the boundary shapes are precisely
represented using three-dimensional boundary-fitted coordinates, which are regenerated to respond to
unsteady deformation. In this coordinate system, the moving boundary is treated with the ALE for-
mulation and the governing equations are transformed into computational space, where discretization
is made with sufficient numerical accuracy.
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Fig. 7 Sand bed profiles on center line (O=measured, @=predicted)

This computational method was applied to the results of the field measurements in front of a power
station. As a result, while the predicted width of the scoured area is narrower than that of the measured
results, it is shown that the bed profiles on the center line, including the most scoured area, are reason-
ably predicted both in two different discharge conditions. In terms of the accuracy and the generality
of the present numerical model and solution algorithm, this computational method is expected to be
applied to wide range of sediment transportation and bed-deformation problems in hydraulics.
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. APPENDIX-NOTATION

The following symbols are used in this paper:

B =sand bed height;

C = sand concentration;

Ci,Cy,Ce,Ce1,Ceo = coefficients of turbulence model;

d = diameter of sand particle;

g = gravity;

9i ‘ = g; component of gravity force;

k : = turbulence energy;

Py = contral function;

Py = turbulent Prandtl number;

P ‘ = Inean pressure;

Ds = pick-up rate;

9 = sand flux in z; direction;

T = mean temperature;

t == time in physical space;

Upm - = contravariant grid velocity component;
Un = contravariant velocity component; ‘
U4 = mean velocity component in z; direction;
Uis ' = friction velocity in z; direction (i = 1,2);
wy : = falling velocity of sand;

z; = coordinates in physical space;

a = thermal conductivity; '

5] ' = thermal expansion coefficient;

04 = porosity of bed material;

AT = temperature difference from standard value;
At = time increment;

€ = dissipatioﬁ rate of turbulence energy;
€x k = eddy conductivity;

13 ' = eddy viscosity;

€5 = turbulent diffusivity for C;

A , = molecular diffusivity for C;

v = kinematic viscosity;

Em = coordinates in transformed spé.oe;

p = fluid density;

o = density of sand particle;

T = time in transformed space;

Ty = normalized bottom shear stress;

Taf =1, caused by flow;

Tewm = 7, caused by wave motion;
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