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SYNOPSIS

It has been actually observed that the wave flows due to tsunamis, which have reached river mouths,
sometimes become running-up flows in rivers. ‘As a result, they cause serious damage to structures. A three-
dimensional computational method based on MICS (Multiphase Incompressible flow solver with Collocated grid
System) is being planned to be used to evaluate the related local phenomena caused by the running-up flows, such
as the transportation of floating materials, fluid forces acting on structures and flooded flows over river banks,
since MICS enables us to deal with the front of free surface flows accurately and evaluate fluid forces against solid
objects without empirical formulations. In this paper, some hydraulic experiments were conducted with a flume
equipped with a wave generator and some fixed boxes which simulate a waterway, coastal levees and the land
areas. The computational method based on MICS was applied to the experimental results and its validity was
discussed by comparing the experimental and computational results.

INTRODUCTION

It has been reported that the wave flows caused by tsunamis, which can reach river mouths, often run up
along rivers in the upstream direction and are sometimes transformed into flows accompanied by drifting things
which cause serious damage to structures in the rivers, like bridge piers. In addition, when the. running-up fows
overflow the river embankments, the flows can extend to residential, industrial and other important areas causing
disasters such as floods.

It is therefore important to understand the characteristics of the running-up wave flows, transportation of
drifting objects and the behaviors of their flooded flows, in order to predict the possible damage in the related
areas and to plan for evacuation procedures. According to previous studies of fooded flows due to tsunamis(1),
it was pointed out that the sufficient spatial resolution is necessary in the numerical predictions with shallow
water equations. In addition, a numerical study was conducted using one-dimensional shallow water equation
with nonlinear dispersive wave theory for the propagation of tsunami in rivers (2). In fact, a high-resolution
and three-dimensional computational method is essentially important to evaluate the transportation of drifting

objects and the forces acting on the structures due to wave flows and collisions of the objects, since these local
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phenomena have three-dimensional characteristics that cannot be treated with two-dimensional shallow water
equations.

Taking account of the above indications, the 3D MICS(3) (Multiphase Incompressible flow solver with
Collocated grid System) is thought to be one of the most effective computational methods, since it enables us
to predict multiphase flow fields, such as the transportation of solid objects in free-surface flows. It has been
confirmed that the 3D MICS enables us to predict the movements of objects due to wave flows and to evaluate
the fluid forces acting on the objects without any empirical formulations, such as the coefficient of resistant
force(3).

In this paper, some basic hydraulic experiments were conducted using a flume by means of a wave generator to
measure the running-up flows in a waterway and their flooded flows over land areas. In addition, the computational
method based on the 3D MICS was applied to the experimental results to confirm its validity. Conclusively, the
applicability of the 3D MICS is discussed by making a comparison between the experimental and the computational

results.

NUMERICAL PROCEDURES

Basic eguations

The governing equations used in MICS are based on a one-fluid model which is similar to that of mixture
gas. In the MICS, the multiphase field is assumed to be constructed with immiscible and incompressible fluids
with different physical properties. The details of the derivation and modelings concerning the governing equations
can be found in our previous paper(3). The governing equations consist of the following mass preservation law

written in the Euler description, incompressible condition and momentum equations:
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where p is the volume-averaged density in the control volume that is a sufficiently small volume including different
incompressible fluids. While the pressure p and coefficient of viscosity u are volume-averaged values same as p,
the velocity component u; in z; direction is defined as the mass-averaged value. The acceleration components due
to external force and surface tension are given by f; and fs,; respectively, while f; is neglected in the present

computations.
Discretization and computational method

Numerical algorithms are almost similar to the ones that have been proposed for incompressible fluids using
collocated grid system (4). The computational procedures consist of three stages; prediction, pressure-calculation
and correction stages.

In the prediction stage, the estimated velocity components are obtained at the cell center points. At this
stage, the momentum equations, in which pressure variables are evaluated at the present computational step n,
the velocity variables are discretized implicitly, which corresponds to the C-ISMAC method proposed to free-
surface flows (5). The C-ISMAC method allows us to use larger time increment At than explicit methods, while

higher-order spatial scheme is easily implemented. The convection terms are written in the preservation forms



and they are evaluated higher-order TVD schemes or the fifth-order FVM-QSI scheme that is advantageous in
the computational accuracy, preservation and numerical stabilities. '

In the MICS, the computational volumes occupied by solid bodies are also treated as incompressible fluids
with different physical properties. The volume fraction of solid bodies in a single three-dimensional cell is evaluated
with a sub-cell method (3). Since the tangential forces acting on solid bodies are evaluated through the diffusion
terms in momentum equations, no complicated treatments for the boundaries are necessary.

At the pressure-calculation stage, the estimated cell-centered velocity components are spatially interpolated
on the cell boundaries and pressure field is corrected so that the diveigence of velocity vectors in a cell D should
be sufficiently small. In order to correct the pressure field in this way, the C-HSMAC method (6) is utilized. In
this method, firstly, the gradients of pressure variables, which are located at cell center points, are evaluated for
the velocity components interpolated on cell boundaries. Then the pressure is corrected through the iterative
computations with the following three equations until the divergence |D*| at k step of the iteration in each cell
becomes less than the threshold value Dy.
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where superscript & is the step number of the iterative computation in the C-HSMAC method, 4; is the velocity
components on cell boundaries. The discretized relationships of Eq. (4) form the linear system of ¢ and the
numerical solutions can be derived by the BiCGSTAB method (7) When the divergence, or the error of fluid
continuity D¥, becomes less than the threshold Dy in all cells, the iterative computation is completed and the
cell-centered velocity components are corrected with the obtained pressure variables in the correction stage.

The present C-HSMAC method for pressure computation allows us to deal with the flow field where the
density distributions significantly change. Actually, it is applicable to the stably stratified two-layer flows in a
rectangular tank where the densities of the upper and lower layers, p, and p;, are largely different. Fig.1 shows
the relationship between the angular frequency o of the standing waves arising on the two-layer interface and
the ratio of densities r, = p,/p; in the stably stratified two-layer fluids, in which the small amplitude sinusoidal
profile is initially given to the interface of two layers. While the density ratio 7, ranges from 0.8 x107% to 1.0,
the predicted angular frequencies agree well with the theoretical values, which are evaluated from the following
relationship, in the wide range of r:
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where h,, and h; are depths of upper and lower layers respectively, b is the horizontal length of the rectangular
tank and ¢ is the acceleration of gravity.

The fluid force acting on a solid body F; is evaluated through the computational results described above (8).
The fluid force in a single cell F, is calculated through the terms included on the right hand side of momentum
equations, which are external force, pressure and diffusion terms. The volume fraction of a solid body is evaluated
with a sub-cell method. In the sub-cell method, as illustrated in Fig.2, a computational cell is divided into multiple
smaller sub-cells and the number of the sub-cells included in the solid body is counted. The volume fraction is
estimated with the number of sub-cells.

The fluid force F; is obtained as the summation among all cells that include the solid body, Y fesFe, where
fes is the volume fraction of the solid bodies in a cell.
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Fig. 1 Relationship between ¢ and r, in standing waves of two-layer interface
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Fig. 2 Sub-cell method

The motions of solid bodies are predicted with the governing equations for translational and rotational
motions. In these equations, the body-body and body-boundary contact forces are taken into account on the
basis of a 3D DEM model (9), in addition to the fluid forces. With the position of solid bodies calculated at a new
time step n + 1, their new volume fraction in each cell is calculated and the physical properties are determined
with the sub-cell method.

HYDRAULIC EXPERIMENTS AND ITS PREDICTIONS

Ezperimental flume and measuring method

The outline of the experimental flume is shown in Fig. 3. This flume has a wave generator, which is a flat
plate that can be shifted continuously by the electric slider controlled by a computer. In the experiments, the
value of the translational shift was 0.1 m and its moving speed was 0.4 m/s.

A rectangular step and four boxes are fixed in the flume. The height of the step h; is 0.1 m, which is same
as the depth of the initial static water h. The boxes Bl and B2, which correspond to the coastal levee and the
land area, are set up on the step symmetrically in the flume. The waterway A between the boxes shows the river
area, along with the wave flows run up in the experiment. The bottom height of the waterway A is equal to hg

and it is dry in the initial condition of the experiment. The geometries of the flume are L0 = 0.64 m, L1 = 80
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Fig. 3 Geometry of flume (plane, side and front views)

mm, L2 = 0.56 m, W= 0.19 m, W,= 30 mm and Wb': 80 mm. The heights of the boxes are hy; = 0.1 m and hyy
= 10 mm.

In the experiment, the generated waves collide with the boxes Bl and a part of the wave flow, entering
between boxes Bl, runs up along waterway A. No waves overflow boxes Bl in the present conditions. Some of
the running-up flows into waterway A overflow on the boxes B2 and extend over the surfaces. In addition, the
remaining running-up flows that reach the upstream end, which is a vertically fixed wall, are reflected on it and
then toward in the downstream direction. In the experiments, the water was colored with dye and the running-up
flows in waterway A and flooded flows on boxes B2 were visualized. The behaviors of the visualized flows were

captured through the video camera set up above the flume.
Conditions of computations

The running-up wave flows and flooded flows were numerically simulated with 3D MICS. Since MICS enables
us to deal with multiphase flows, water and air flows are simultaneously predicted, taking account that they are
incompressible fluids with different physical properties.

The geometries of the computational volume are 1.28 m in length , 0.19 m in width and 0.20 m in height.
The number of computational cells are 80 x 24 x 40 in each direction. The convection terms included in the
momentum equations and the mass-conservation equation are solved with a fifth-order TVD scheme (10). In
the prediction stages of the numerical algorithms for momentum and mass-conservation equations, a C-ISMAC
method (5) is used and it allows us to set At = 5.0 x 1072 sec. The kinematic viscosities for water and air are 1.0
x107% m?/s and 1.0 x107% m?/s and their densities are 1.0 x10% kg/m? and 1.0 kg/m?® respectively. The linear
system of the discretized pressure equations is solved with the BiICGSTAB method (7) and the threshold for the
dot product of the residual vectors is set at 1.0 x 10720,

Comparison and applicability of the prediction method
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The running-up wave flows along waterway A and flooded flows over boxes B2 are shown in Figs. 4 to 7, in
which experimental and predicted results are compared. As shown in Fig.4, the first wave flow enters waterway
A at about t = 0.9 sec. after the start of the wave generation. The wave flows immediately overflow on the
top surfaces of boxes B2. The flooded flows on boxes B2 extend toward transverse and upstream directions. It
is noted that the water depth of the front area is larger than the other region. In the computations, the fluid
motions, including their turbulent components, are directly predicted. Thus, the non-symmetric flow behaviors
are naturally reproduced in the predictions.

In addition to the flooded flows, the wave flow in waterway A still exists and runs up in the upstream
direction. This wave flow increases its depth and overflows on both sides after it collides with the upstream wall,
as shown in Figs.4 (f) to (h). Then the reflected wave flow proceeds in the downstream direction. It is possible
that the similar flooded flows actually occur when the structures, such as closed flood gates, exist in a river.
Moreover, in case that the reflected wave flow directing toward downstream direction arises, the reflected wave
flow collides with the following running-up flows coming from a river mouth and the water depth becomes larger
due to the interference of both waves.

The tendencies observed in the experimental results described above are reasonably reproduced in the pre-
dicted results as shown in Fig.5. The unsteady processes of the extension of the flooded flows and the reflection
and interference of wave flows in the waterway are adequately simulated with the present method. In particular,
the fact that the water depth of the front area in the flooded flows is larger than the other areas is also predicted
in the computational results.

While general features of the experiments are suitébly predicted, some discrepancies can be found between
experiments and predictions regarding the distributions of véry thin water layers on boxes B2. In the experiments,
the thin water layers remain on the surfaces of boxes B2, while in the predictions they have disappeared. This
effect is possibly related to the wettability of the box surfaces in experiments. The wettability is defined as
the contact angle between a droplet of the liquid in thermal equilibrium on a horizontal surface. This effect is
thought to be dominant in the smaller-scale experiments. Thus, it might be necessary to adopt the larger-scale
experimental flume, in order to remove this effect.

The results after ¢ = 1.7 s are shown in Figs.6 and 7. In the experiments, a large amount of water overflows
on boxes B2 near the upstream end due to the collision of running-up wave flows with the wall. As shown in Fig.6
(¢}, the second wave flow enters the waterway A from the downstream side. This flow also floods over boxes B2
just after the entrance into waterway A, which is similar to the first wave flow.

Fig.7 shows the predicted results for the above experimental results. Compared with Figs.7 (a) to (d), it can
be seen that the predicted velocity of the front area of the flooded regions is somewhat slower than the experiments.
While the reason for this difference is not clear, it is possible that the vertical resolution of computational cell
might not be sufficient. On the other hand, the entrance and overflow of the second wave flow are adequately
predicted by the present method.

CONCLUSIONS

The three-dimensional computational method for multiphase flows, 3D MICS, has been developed and
its applicabilities have been discussed for the running-up flows in a waterway caused by the generated waves.
Hydraulic experiments have been conducted with a flume equipped with a wave generator and a step and boxes
which simulate a waterway, coastal levees and the land areas. As a result of the computations with 3D MICS,
it has been found that some features, such as the running-up flows in waterway A, the extension of the flooded
flows on boxes B2, reflection on the upstream end wall and the entrance of the second wave flows, are successfully
reproduced. While some discrepancies were found on the thin water layers and the speed of the extension of
the flooded flows, it can be conchjded that 3D MICS is generally applicable to the experimental results of the

running-up flows and its flooded flows caused by tsunamis.
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APPENDIX-NOTATION

The following symbols are used in this paper:

Dy = threshold for the error on fluid continuity;

D = divergence of velocity at & step in a C-HSMAC method;
fi = acceleration of external force in z; direction;

fs.i = acceleration of surface tension in z; direction;

P = volume-averaged pressure;

t = time;

Ui = mass-averaged velocity componént in x; direction;

ﬁf = cell-boundary velocity component at k step in C-HSMAC method;
z; = orthogonal coordinates;

At = time increment;

1 = volume-averaged coefficient of viscosity;

P = volume-averaged fluid density;
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